

PGDCA PAPER : DBMS

 LESSON NO. : 7

ENTITY RELATIONSHIP MODEL -I

Introduction
Entity Relationship Model: Basic Concepts
Mapping Cardinalities
Entity relationship Diagram
Weak and Strong Entity sets
Aggregation
Summary
Questionnaires

7.1 Introduction:
The Entity-Relationship Model is a high-level conceptual data model developed by Chem

in 1976 to facilitate database design. The E-R Model is shown diagrammatically using E-R
diagrams which represents the elements of the conceptual model that show the meanings and
the relationships between those elements independent of any particular DBMS and

implementation details. Cardinality of a relationship between entities is calculated by
measuring how many instances of one entity are related to a single instance of another. One of
the main limitations of the E-R Model is that it cannot express relationship among relationships.
So to represent these relationships among relationships. We combine the entity sets and their

relationship to form a higher level entity set. This process of combining entity sets and their
relationships to form a high entity set so as to represent relationships among relationships is
called Aggregation.

7.2 Entity Relationship Model

The entity-relationship model is based on the perception of a real world that

consists of a set of basic objects called entities, and of relationships among these objects.
It was developed to facilitate database design by allowing the specification of an enterprise
schema which represents the overall logical structure of a database. The E-R Model is

extremely useful in mapping the meanings and interactions of real-world enterprises into
a conceptual schema. Entity – relationship model was originally proposed by Peter in 1976
as a way to unify the network and relational database views. Simply stated the ER model
is a conceptual data model that views the real world as entities and relationships. A basic

component of the model is the entity relationship diagram, which is used to visually
represent data objects. For the database designer, the utility of the ER model is :

1) It maps well to the relational model. The constructs used in the ER model can easily

be transformed into relational tables.
2) It is simple and easy to understand with a minimum of training. Therefore

the model can be used by the database designer to communicate the design

to the end user.
3) In addition, the model can be used as a design plan by the database

developer to implement a data model in specific database management

software.

 7.2.1 Basic Concepts

There are three basic notions that the E-R data model employs – entity sets,
relationship sets, and attributes.

Entity : An entity is a thing or object in the real world that is distinguishable from all

other objects. For example, each person in an enterprise is an entity. An entity has set of
properties and the values for some set of properties may uniquely identify an entity. For example,
the employee Id of a person uniquely identifies one particular person in the enterprise. Entities
are principal data object about which information is to be collected. Entities are usually

recognizable concepts, either concrete or abstract such as person, places, things, or events which
have relavence to the database. Some specific examples of entities are EMPLOYEES, PROJECTS
and INVOICES. An entity is analogous to a table in the relational model. Entities are classified as :

1) Independent : An independent entity is one that does not rely on another

for identification.

2) Dependent : A dependent entity is one that relies on another for
identification.

Special Entity Types : Associative entities (also known as intersection entities) are
entities used to associate two or more entities in order to reconcile a many-to-many

relationship. Subtypes entities are used in generalization hierarchies to represent a subset
of instances of their parent entity, called the supertype, but which have attributes or
relationships that apply only to the subset.

Entity set : An entity set is a set of entities of the same type that share the same

properties, or attributes. The set of all persons who are customers at a given bank, for
example, can be defined as the entity set customer. The individual entities that constitute
the set are said to be the extension of the entity set. Thus all the customers of the given
bank are the extensions of the entity set customer.

Attributes : An entity is represented by a set of attributes. Attributes are
descriptive properties possessed by each member of an entity set. For example, a
customer entity set of a given bank has the attributes like account number, customer
name, customer address etc. For each attribute, there is a set of permitted values, called

the domain or value set, of that attribute. The domain of attribute customer-name might
be the set of all text strings of a certain length.

A database thus includes a collection of entity sets, each of which contains any
number of entities of the same type. For example, a bank database consists of entity sets

like customer, loan etc.
An attribute, as used, in the E-R Model, can be characterized by the following

attribute types:
1. Simple and composite attributes: Simple attributes are those that cannot

be divided into subparts i.e. into other attributes. For example: customer
account number is a simple attribute. Composite attributes are those that

can be further divided into subparts or attributes. For example:
Customer_name attribute of an entity can be considered as composite
attribute because it can further be divide into subparts like first name,
middle name and last name.

2. Single valued and multivalued attributes: The attributes that have a single value
for a particular entity is known as single valued attributes. For example,

employee_Id of an employee in an enterprise will be single valued for every employee.

Multivalued atributes are those attributes that have multiple values for an entity.
For example, employee_dependent_names for a particular employee in an enterprise
can have zero, one or more names depending on the number of dependents of an
employee.

3. Null attributes: A null value is used when an entity does not have a value
for an atribute. For example, if a particular employee has no dependents,

then the value of employee_dependent_names for that employee in an
enterprise will be null. Null can also designate that an attribute value is
unknown. An unknown value may be either missing or not known.

4. Derived attributes: The value of this type of attributes is derived from the values of

other related attributes or entities. Some attributes may be related for a particular
entity For example: the age of an employee can be derived from the date_of_birth
attribute of an employee therefore they are related .

Relationship Sets: A relationship is an association among several entities. For example,
we can define a relationship that associates an employee Ram Singh with Department
Computer Science. This relationship specifies that Employee Ram Singh is working in the
department Computer Science.

A relationship set is a set of relationships of the same type. Formally, it is a

mathematical relation between n>=2 entity sets. If E1,E2,E3…..En are entity sets, then
relationship set R is a subset of {(e1,e2,e3…..en)| e1 ε E1, e2 ε E2, e3 ε E3….. en ε En} where
(e1,e2,e3…..en) is a relationship.

Consider the two entity sets employee and Departments. We define the relationship

set works for to denote the association between employee and the department that the
employees have.

The association between entity sets is referred to as participation, that is the entity
sets e1 ε E1, e2 ε E2, e3 ε E3….. en ε En participate in relationship set R. A relationship
instance in an E-R schema represents that an association exists between the named
entities in the real world enterprise that is being modeled.

The function that an entity plays in a relationship is called that entity’s role. Since

entity sets participating in a relationship set are generally distinct, roles are implicit and
are not usually specified. However, they are useful when the meaning of a relationship
needs clarification. Such is a case when the entity sets of a relationship set are not

distinct, i.e., the same entity set participates in a relationship set more than once, in
different roles. In this type of relationship set, which is sometimes called a recursive
relationship set, explicit role names are necessary to specify how an entity participates in
a relationship instance.

A relationship can also have descriptive attributes. Consider a relationship set
depositor with entity set customer and account. We could associate the attribute access-
date to that relation to specify the most recent date on which a customer accessed an
account. The depositor relationship among the entities corresponding to customer is

described by access-date, which means when customer has most recently accessed the
account.

The number of entity sets that participate in a relationship set is also the degree of

the relationship set. A binary relationship set is of degree 2; a ternary relationship set is of
degree 3.

 7.3 Mapping Cardinalities:

Mapping Cardinalities, or cardinality ratios, express the number of entities to
which another entity can be associated via a relationship set.
Mapping cardinalities are most useful in describing binary relationship sets, although

occasionally they contribute to the description of relationship sets that involve more than
two entity sets.

For a binary relationship sets R between entity sets A and B, the mapping
cardinality must be one of the following:

 One to One: An entity in A is associated with at most one entity in B, an
entity in B is associated with at most one entity in A. See Figure (a)

 One to many: An entity in A is associated with any number of entities in B.
An entity in B, however, can be associated with at most one entity in A. See
Figure (b)

 Many to one: An entity in A is associated with at most one entity in B. An
entity in B, however, can be associated with any number of entities in A.

See Figure (c)

 Many to Many: An entity in A is associated with any number of entities in
B. An entity in B, can also be associated with any number of entities in A.
See Figure (d)

7.4 Entity Relationship Diagrams: The overall logical structure of a database can be

expressed graphically by an E-R Diagram. The relative simplicity and pictorial clarity of
this diagramming technique may well account in large part for the wide spread use of the

E-R Model. Such a diagram consists of the following components:

 Rectangles, which represents entity sets.

 Ellipses, which represents attributes.

 Diamonds, which represents relationship sets.

 Lines, which link attributes to entity sets and entity sets to relationship sets.

 Double ellipses, which represents multivalued attributes.

 Dashed ellipses, which denote derived attributes.

 Double Lines, Which indicate total participation of an entity in a

relationship set.
To distinguish the mapping cardinalities of relationship set, we draw either directed

line (→) or an undirected line(-) between the relationship set and the entity set.
Consider the following E-R Diagram, which consists of two entity sets, customer

and loan, related through a binary relationship set borrower. The attributes associated

Social_security
Customer_street

Loan_number amount

Customer_name

Customer_city

Borrower
Loan Customer

Department Manager

Manager Employee

with customer are customer_name, social-security, customer-street, and customer-city.

The attributes associated with loan are loan-number and amount.
The relationship set borrower may be many to many, one to many, many to one or one to

one.

In the above E-R diagram, underlined attributes are acting as primary keys of the

corresponding entity sets.

Direction : The direction of a relationship indicates the originating entity of a relationship .

The entity from which a relationship originates is the parent entity ; the entity where the
relationship terminates is the child entity .

The type of the relation is determined by the direction of line connecting
relationship component and the entity . To distinguish different types of relation , we draw

either a directed line or an undirected line between the relationship set and the entity set .
Directed line is used to indicate one occurrence and undirected line is used to indicate
many occurrences in a relation .

DEPARTMENT , MANAGER , EMPLOYEE , PROJECT
The relationship between a DEPARTMENT and a MANAGER is usually one-to-one ;

there is only one manager per department . This relationship between entities is shown
below. Each entity is represented by a rectangle and a direct line indicates the
relationship between them . The relationship for MANAGER is both 1:1

Note that a one to one relationship between two entity set does not imply that for

an occurrence of an entity from one set at any time there must be an ocurrence of an

entity in the other set. In the case of an organistion , there could be times when a
department is without a manager or when an employee who is classified as a manager
may be without a department.

A one to many relationship exists from the entity MANAGER to the entity

EMPLOYEE because there are several employees reporting to the manager . As we have
pointed out there could be an occurrence of the entity type MANAGER having zero
occurrences of the entity type EMPLOYEE reporting to him or her . A reverse relationship ,

from EMPLOYEE to MANAGER would be many to one since a single manager may
supervise many employees.

Loan No

Amount

C name
Phone no

Address

City

Cust_
Loan

Loan Customer

The relationship between the entity EMPLOYEE and the entity PROJECT can be

derived as follows : Each employee could be involved in a number of different projects ,
and a number of employees could be working on a given project . This relationship
between EMPLOYEE and PROJECT is many to many .It is illustrated as below .

These relations can also be expressed in terms of following examples .
Consider a Customer – Loan relationship in which the loans are given to customers.

Depending on the rules of the bank, one customer can take a single loan or multiple loans
and relationship may be classified as 1:1 If one customer can take only one loan .

One-to-One Relationship

1:M If one customer can take multiple loans

One-to-Many Relationship

C_name
Phone no

Address

City

Cust_
Loan

Loan Customer

Project Employee

Loan No

Amount

Phone no

Address

City

Cust_
Loan

Loan Customer

C name
Phone no

Address

City

Cust_
Loan

Loan Customer

M:1 If multiple customers participate for a single loan and one customer can take only
one loan

Many-to-One Relationship

M:M If multiple customers participate for a single loan and one cutomer can take more

than one loan .

Many-to-Many Relationship

 7.5 Weak and Strong Entity Sets

An entity Set may not have sufficient attributes to form a primary key, such an

entity set is termed as weak entity set. An entity set that has a primary key is termed as a
strong entity set. For example, consider the entity payment, which has the three
attributes: payment-number, payment-date, and payment-amount. Although each
payment entity is distinct, payments for different loans may share the same payment

number. Thus, this entity set does not have a primary key; it is a weak entity set. For a
weak entity set to be meaningful, it must be part of a one-to-many relationship set. This
relationship set should have no descriptive attributes, since any required attributes can
be associated with the weak entity set. A member of a strong entity set is a dominant

entity, whereas a member of a weak entity set is a subordinate entity.
Although a weak entity set does not have a primary key, we nevertheless need a means

of distinguishing among all those entities in the entity set that depend on one particular strong

C name

Loan No

Amount

Loan No

Amount

entity. The discriminator of a weak entity set is a set of attributes that allows this distinction to

be made. For example, the discriminator of the weak entity set payment is the attribute
payment number, since, for each loan, a payment number uniquely identifies one single
payment for that loan. The discriminator of a weak entity set is also called the partial key of the
entity set.

The Primary key of a weak entity set is formed from by the primary key of the
strong entity set on which set is existence dependent, plus the weak entity set’s
discriminator. In the case of the entity set payment, its primary key is (loan-number,
payment-number), where loan-number identifies the dominant entity of a payment, and

payment-number distinguishes payment entities within the same loan.
The identifying dominant entity set is said to own the weak entity set that it

identifies. The relationship that associates the weak entity set with an owner is the
identifying relationship. In our example, loan-payment is the identifying relationship for
payment.

A weak entity set in E-R Diagram is represented by a doubly outlined box, and the

corresponding identifying relationship by a doubly outlined diamond.
The relationship between weak entity and strong entity set can be expressed with

following example. In the following example loan-payment is the identifying relationship
for payment entity. A weak entity set is represented by doubly outlined box corresponding

identifying relation by a doubly outlined diamond. Here double line indicate total
participation of weak entity in strong entity set it; means that every payment must be
related via loan-payment to some account. The arrow from loan payment to loan indicates
that each payment is for single loan. The discriminator of a weak entity set is underlined

with dashed lines rather than solid line.

Relation between strong and weak entity set

 7.6 Aggregation

One limitation of the E-R Model is that it is not possible to express relationships
among relationships. To illustrate the need for such a construct, we consider a database
describing information about customers and their loans. Suppose that each customer-

loan pair may have a bank employee who is the loan officer for that particular pair. Using
our basic E-R Diagram constructs, we obtain E-R diagram drawn in following figure (a) . It

Loan_number Payment_date

Payment_number
amount

Payment_a

Loan_p
ayment Loan Payment

appears that the relationship sets borrower and loan-officer can be combined into one

single relationship set. Nevertheless, we should not combine them, because doing so
would obscure the logical structure of this schema. For example, if we consider the
borrower and loan-officer relationship sets, then this combination specifies that a loan
officer must be assigned to every customer-loan pair, which is not true. The separation

into two different relationship sets solves this problem.
There is redundant information in the resultant figure, however, since every

customer-loan pair in loan-officer is also in borrower. If the loan officer were a value
rather than an employee entity, we could instead make loan-officer a multivalued

attribute of the relationship borrower. But doing so makes it more difficult to find, for
example, customer-laon pairs for which an employee is responsible. Since the loan officer
is an employee entity, this alternative is ruled out in any case.The best way is to model a
situation such as the one just described is to use aggregation. Aggregation is an

abstraction through which relationships are treated as higher-level entities. Thus, for our
example, we regard the relationship set borrower and the entity sets customer and loan as
a higher-level entity set called borrower. Such an entity set is treated in the same manner
as is any other entity set. A common situation for aggregation is shown in figure (b).

Figure(a): E-R diagram with redundant relationships

Social_security
Customer_street

Loan_number amount

Customer_name

Customer_city

Borrower

Loan-officer

Loan Customer

Telephone_number
e- social_security

Employee_name

employee

Figure (b) : E-R Diagram with aggregation

Generalization

A generalization hierarchy is a form of abstraction that specifies that two or more
entities that share common attributes can be generalized into a higher level entity type

called a supertype or generic entity . The lower level of entities become the subtype or
categories to the supertype . Subtypes are dependent entities .

Generalization is used to emphasize the similarities among lower-level entity sets

and to hide differences . It makes ER diagram simpler because shared attributes are not
repeated . Generalisation is denoted through a triangle component labeled ‘ IS A ‘ , as
shown below

Loan-officer

Borrower

Customer_city Customer_name

amount Loan_number Customer_street Social_security

Loan Customer

Telephone_number

e- social_security Employee_name

employee

Int Rate

Saving Account

Account is the higher level entity set and Saving account and Current account are
lower level entity sets .

Specialization

Specialization is the process of taking subsets of a higher level entity set to form

lower level entity sets . It is a process of defining a set of subclasses of an entity type,
which is called as superclass of the specialization . The process of defining subclass is
based on the basis of some distinct characteristics of the entities in the superclass .

For example specialization of the Employee entity type may yield the set of

subclasses namely Salaried_Employee and Hourly_Employee on the method of pay as
shown below.

ISA

Overdraft amt

Current Account

Account Interest
Rate

Balance

Saving account

Account Balance

Overdraft_amt

Current account

Acc_no Balance

Account

Generalised As

Emp number Emp name

Basic_pay

Salaried-Employee

Hourly rate

Hourly_Employee

7.7 Summary

The entity-relationship model is based on the perception of a real world that
consists of a set of basic objects called entities, and of relationships among these objects.
There are three basic notions that the E-R data model employs – entity sets, relationship

sets, and attributes. An entity is a thing or object in the real world that is distinguishable
from all other objects. An entity set is a set of entities of the same type that share the
same properties, or attributes. An entity is represented by a set of attributes. Attributes
are descriptive properties possessed by each member of an entity set. A relationship is an

association among several entities.
A relationship set is a set of relationships of the same type. Mapping Cardinalities,

or cardinality ratios, express the number of entities to which another entity can be
associated via a relationship set.

Mapping cardinalities are most useful in describing binary relationship sets,
although occasionally they contribute to the description of relationship sets that involve

more than two entity sets. The overall logical structure of a database can be expressed
graphically by an E-R Diagram. The relative simplicity and pictorial clarity of this
diagramming technique may well account in large part for the wide spread use of the E-R
Model. An entity Set may not have sufficient attributes to form a primary key, such an

entity set is termed as weak entity set. An entity set that has a primary key is termed as a

Emp number Emp name Basic Pay Hourly rate

Employee

IS A

Employee

strong entity set. One limitation of the E-R Model is that it is not possible to express

relationships among relationships. This limitation can be removed through aggregation.
Aggregation is an abstraction through which relationships are treated as higher-level
entities.

7.8 Questionnaires:
1. Define entity, entity set, attribute, relationship and relationship set.
2. What do you mean by an attribute? Explain various types of attributes.

3. What is an E-R Diagram? Explain various constructs for drawing E-R
Diagram.

4. Explain E-R Model.

5. Define Weak and strong entity sets with suitable examples.
6. Define aggregation with suitable example. Why it is needed?

7. Differentiate between weak and strong entity sets.
8. What do you mean by mapping cardinality? Explain various mapping

cardinalities with suitable examples.

PGDCA PAPER : DBMS
 LESSON NO. : 8

ENTITY RELATIONSHIP MODEL -II

Introduction
Generalization
Converting ER Diagrams to tables
Summary
Questionnaires

8.1 Introduction:
The refinement from an initial entity set into successive levels of entity subgroups

represents a top-down design process in which, distinctions are made explicit. The design
process may also be processed in a bottom-up manner, in which multiple entity sets are
synthesized into a higher-level entity set based on common features. Generalization is a
simple inversion of Specialization. A database that conforms to an E-R database schema

can be represented by a collection of tables. For each entity set and for each relationship
set in the database, there is a unique table that is assigned the name of the corresponding
entity set or relationship set. Each table has multiple columns, each of which has a
unique name.

8.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroups
represents a top-down design process in which, distinctions are made explicit. The design

process may also be processed in a bottom-up manner, in which multiple entity sets are
synthesized into a higher-level entity set based on common features. The database
designer may have first identified a checking-account entity set with the attributes
account-number, balance, and overdraft-amount, and a savings-account entity set with

the attributes account-number, balance, and interest-rate.
There are similarities between the checking-account entity set and the savings-

account entity set in the sense that they have several attributes in common. This
commonality can be expressed by generalization, which is a containment relationship that
exists between a higher-level entity set and one or more lower-level entity sets. Higher-
and lower-level entity sets also may be designated by the terms superclass and subclass

respectively. The account entity set is the superclass of the savings-account and checking-
account subclasses.

For all practical purposes, generalization is a simple inversion of specialization. We

will apply both processes, in combination, in the course of designing the E-R Schema for
an enterprise. In terms of the E-R diagram itself, we do not distinguish between
specialization and generalization. New levels of entity representation will be distinguished
(specialization) or synthesized (generalization) as the design schema comes to express fully

the database application and the user requirements of the database. Differences in the
two approaches may be characterized by their starting point and overall goal.

Specialization stems from a single entity set, it emphasizes differences among
entities within the set by creating distinct lower-level entity sets. These lower-level entity

sets may have attributes, or may participate in relationships, that do not apply to all the

entities in the higher-level entity set. Indeed, the reason a designer applies specialization

is to represent such distinct features. If savings-account and checking-account did not
each have unique attributes, there would be no need to specialize the account entity set.

Generalization proceeds from the recognition that a number of entity sets share
some common features. Based on their commonalities, generalization synthesizes these

entity sets into a simple, higher-level entity set. Generalization is used to emphasize the
similarities among lower-level entity sets and to hide the differences; it also permits an
economy of representation in that shared attributes are not repeated.

A crucial property of the higher-level and lower-level entities created by

specialization and generalization is attribute inheritance. The attributes of the higher-level
entity sets are said to be inherited by the lower-level entity sets. For example: savings-
account and checking-account inherit the attributes of account. Thus saving-account is
described by its account-number, balance and Interest rate and Checking account is

described by its account-number, balance, and overdraft-amount attributes. A lower-level
entity set also inherits participation in the relationship sets in which its higher-level
participates. Both the savings-account and checking-account entity sets participate in the
depositor relationship set. Attributes inheritance applies through all tiers of the lower-

level entity sets. The standard, gold, and senior lower-level entity sets inherit the
attributes and relationship participation of both checking-account and account.

Whether a given portion of an E-R model was arrived at by specialization or

generalization, the outcome is basically the same:

 A higher-level entity set with attributes and relationships that apply to all of

its lower-level entity sets.

 Lower-level entity sets with distinctive features that apply only within a

particular lower-level entity set.

ISA

Num_checks Date_of_birth

Interest_payment Min_balance

gold

standard senior

8.3 Converting E-R diagrams into tables

A database that conforms to an E-R database schema can be represented by a

collection of tables. For each entity set and for each relationship set in the database, there
is a unique table that is assigned the name of the corresponding entity set or relationship
set. Each table has multiple columns, each of which has a unique name.

Both the E-R model and the relational database are abstract, logical

representations of real world enterprises. Because the two models employ similar design
principles, we can convert an E-R design into a relational design. Consequently a

database representation from an E-R diagram to a table format is the basis for deriving a
relational database design from an E-R diagram. In the following section, we will explain
how to convert the E-R diagram or schema into tables.

8.3.1 Tabular representation of Strong Entity Sets

Let E be a strong entity set with descriptive attributes a1, a2, a3……,an. We represent
this entity by a table called E with n distinct columns, each of which corresponds to one of
the attributes of E. Each row in this table corresponds to one entity of the entity set E.

Consider the entity set loan of the E-R diagram shown below:

ISA
Overdraft_amount

Interest-rate

Checking_account
Saving_account

Account_number balance

account

Social_security
Customer_street

Customer_name

Customer_city

Customer

This entity set has two attributes: loan_number and amount. We represent this entity set by
table loan, with two columns, as shown in following figure. The row (L-17,1000) in the loan table
means that loan number L-17 has a amount of Rs. 1000. We can add a new entity to the database
by inserting a row into a table. We can also delete or modify rows.

Table : loan

Loan_number amount
L-17 1000

Let D1 denote the set of all loan numbers and let D2 denote the set of all balances.
Any row of the loan table must consist of a 2-tuple (v1,v2) where v1 is a loan, v1 belongs to
D1 and v2 is an amount where v2 belongs to D2. In general, the loan table will contain only
a subset of the set of all possible rows. We refer to the set of all possible rows of loan as
the Cartesian product of D1 and D2 denoted by D1 X D2.

In general, if we have a table of n columns, we denote the Cartesian product of D1,
D2, D3, … Dn by D1X D2 X D3 …..X Dn.
Similarly, another example, consider the entity set customer of the E-R Diagram shown
above. This entity set has the attributes customer_name, social_security, customer_street,
customer_city. The table corresponding to customer has four columns as shown in Figure
below:

Table : Customer
Customer_name Social_security Customer_street Customer_city
Suresh 123-4-567 Phase I Patiala

8.3.2 Tabular Representation of Weak entity Sets
Let A be a weak entity set with attributes a1, a2, a3……,an. Let B be the strong entity

set on which A is dependent. Let the primary key of B consists of attributes b1, b2,
b3……,bn.. We represent the entity set A by a table called A with one column for each
attribute of the set:

{ a1, a2, a3……,an} U { b1, b2, b3……,bn }

Loan_number amount

Borrower
Loan

As an illustration, consider the entity set payment consisting of attributes

payment_number, payment_date, payment_amount. The primary key of the loan entity set,
on which payment is dependent, is loan_number. Thus , payment is represented by a
table with four columns labeled loan_number, payment_number, payment_date,

payment_amount as shown in following figure:

Table: payment
Loan_number Payment_number Payment_date Payment_amount
L-17 67 10-11-2006 1000

8.3.3 Tabular Representation of Relationship sets
Let R be a relationship set, let a1, a2, a3……,an be the set of attributes formed by the

union of the primary keys of each of the entity sets participating in R, and let descriptive
attributes (if any) of r be b1, b2, b3……,bn.. We represent this relationship set by a table
called R with one column for each attribute of the set:

{ a1, a2, a3……,an} U { b1, b2, b3……,bn }
As an illustration, consider the relationship set borrower in the E-R Diagram

shown above. This relationship set involves the following two entity sets:

 Customer, with the primary key social security

 Loan, with the primary key loan_number
Since the relationship set has no attributes, the borrower table has two columns labeled

social_security and loan_number as shown in figure below:

Table : borrower

Social_security Loan_number
123-4-567 67

The case of a relationship set linking a weak entity set to the corresponding strong

entity set is special. As we noted earlier, these relationships are many-to-one and have no
descriptive attributes. Furthermore, the primary key of a weak entity set includes the

primary key of the strong entity sets. In the E-R diagram shown below, the weak entity set
payment is dependent on the strong entity set loan via the relationship set loan-payment.
The primary key of payment is {loan_number, payment_number} and the primary key of
loan is {loan_number}. Since loan_payment has no descriptive attributes, the table for

loan_payment would have two columns, loan_number and payment_number. The table for
the entity set payment has four columns, loan _number,
payment_number,payment_date,payment_amount. Thus, the loan-payment table is
redundant. In general, the table for the relationship set linking a weak entity set with its

corresponding strong entity set is redundant and does not need to be present in a tabular
representation of E-R diagram.

Loan_payment payment

Multivalued Attributes

We have seen that attributes in an E-R diagram generally map directly into

columns for the appropriate tables. Multivalued attributes, however, are an exception;
new tables are created for these attributes.

For a multivalued attribute M, we create a table T with a column C that

corresponds to M and columns corresponding to primary key of the entity set or
relationship set of which M is an attribute. For example, consider the E-R diagram that

includes the multivalued attribute dependent_name. For this multivalued attribute, we
create a table dependent_name, with columns dname, referring to the dependent_name
attribute of employee, and e_social_security, representing the primary key of the entity set
employee. Each dependent of an employee is represented as a unique row in the table.

8.3.5 Tabular Representation of Generalization

There are two different methods for transforming to a tabular form an E-R diagram
that includes generalization.

1. Create a table for the higher-level entity set. For each lower-level entity set,

create a table that includes a column for each of the attributes of that entity
set plus a column for each attribute of the primary key of the higher-level
entity set. Thus, for the E-R diagram in section 8.2, we have three tables:

 Account, with attribute account_number and balance

 Savings_account, with attributes account_number and interest_rate

 Checking_account, with attributes account_number and
overdraft_amount

2. If the generalization is disjoint and complete – that is if no entity is a
member of two lower-level entity sets directly below a higher-level entity set,
and if every entity in the higher-level entity set is also a member of one of
the lower-level entity sets – then an alternative representation is possible.

Here, create no table for the higher level entity set. Instead, for each lower-
level entity set, create a table that includes a column for each of the
attributes of that entity set plus a column for each attribute of the higher
level entity set. Then, for the E-R diagram in section 8.2 we have two tables:

Payment_date

Payment_amount
Payment_number

Loan_number amount

Loan

 saving_account, with attributes account_number, balance, and

interest_rate.

 Checking_account, with attributes accounts_number, balance, and

overdraft_amount
The saving_account and checking_account relations corresponding to these tables

both have account-numbers as the primary key.

If the second method were used for an overlapping generalization, some values
such as balance would be stored twice unnecessarily. Similarly, If the generalization were
not complete—that is , if accounts were neither savings nor checking accounts—then
such accounts could not be represented with the second option.

8.4 Summary
Specialization stems from a single entity set, it emphasizes differences among entities within

the set by creating distinct lower-level entity sets. Generalization proceeds from the recognition that

a number of entity sets share some common features. Based on their commonalities, generalization
synthesizes these entity sets into a simple, higher-level entity set. Generalization is used to
emphasize the similarities among lower-level entity sets and to hide the differences; it also permits
an economy of representation in that shared attributes are not repeated. Generalization is a simple

inversion of Specialization. Both the E-R model and the relational database are abstract, logical
representations of real world enterprises. Because the two models employ similar design principles,
we can convert an E-R design into a relational design. Consequently a database representation from
an E-R diagram to a table format is the basis for deriving a relational database design from an E-R

diagram.

8.5 Questionnaires
1. Explain the concept of generalization with suitable example.

2. Explain the steps for converting E-R Diagrams into tables.

PGDCA PAPER : DBMS

LESSON NO. : 9

OVERVIEW OF NETWORK AND HIERARCHIAL DATA MODEL

Introduction
Overview the Network Data Model
Overview the Hierarchical Data Model
Summary
Questionnaires

9.1 Introduction:
The network data model represents entities by records and expresses relationships

between entities by means of sets implemented by the use of pointers or links. The model
allows the representation of an arbitrary relationship. The DBTG proposal places a

number of restrictions on the use of the links. A set is a means of representing a one-to-
many relationship between record types. A set type can have an arbitrary number of
occurrences.

Like the network data model, the hierarchical data model uses the records and

pointers or links to represent entities and relationships among them. However, unlike the
network data model, the data structure used is a rooted tree with a strict parent-to-child
ordering. IBM’s IMS DBMS includes the features of Hierarchical Model

9.2 The Network Data Model

The network data model was formalized in the late 1960s by the Database Task

Group of the Conference on Data System Language (DBTG / CODASYL). Their first report
which has been revised a number of times, contained detailed specifications for the
network data model. The specifications contained in the report and its subsequent

revisions have been built on commercial DBMS using DBTG model.

The Network data Model (NDM) represents data for any entity set by a logical
record type. The data for an instance of an entity set is represented by a record
occurrence of the record type.

DBTG Model:
The DBTG model uses two different structures to represent the database entities

and relationships between the entities, namely record type and set type.

Customer
Name

Customer
Street

Customer
City

Social_security
Customer_street

Account_No balance

Customer_name Customer_city

Depositor
Account Customer

Balance

A record type is used to represent an entity type. It is made up of a number of data

items that represent the attributes of the entity.
A set type is used to represent a directed relationship between two record types,

the so called owner record type, and the member record type. The set type, like the record
type, is named and specifies that there is one-to-many relationship (1: M) between the

owner and member record types. The set type can have more than one record type as its
member, but only one record type is allowed to be the owner in a given set type. A
database could have one or more occurrences of each of its record and set types. An

occurrence of a set type consists of an occurrence of the owner record type and any

number of occurrences of each of its member record types. A record type cannot be a
member of two distinct occurrences of the same set type.

In this model, only many-to-one links can be used. One-to-one links are

represented as many-to-one links. Many-to-many links are disallowed to simplify the
implementation.
For example:

In the above E-R Diagram, depositor relationship is many-to-many and to transfer
the relationship into DBTG model, we have to convert this many-to-many relationship into
many-to-one relationships as only many-to-one relationships are allowed in the DBTG

model. Thus, we must create a new dummy record type, R link that may either have no
fields or have a single field containing an externally defined unique identifier, and two
many-to-one links – cust R Link and Acc R Link as follows:

In the DBTG model, a data structure diagram consists of two record types and are

linked to each other through many-to-one relationships. The general form of this
structure is

R Link

Acc R Link

Cust R Link

Account
Number

This structure is referred to as DBTG set.

DBTG Set:

Bachman introduced a graphical means called a data structure diagram to denote

the logical relationship implied by a set. Here a labeled rectangle
corresponding entity or record type. An arrow that connects two labeled rectangles
represents the corresponding entity or record type. The arrow direction is from the owner

record type to the member record type. Figure shows two record types
EMPLOYEE) and the set type DEPT_EMP, with DEPARTMENT as the owner record type
and EMPLOYEE as the member record type.

The data structure diagrams

rectangle, and the arrow is used
one-to-many (1:M) relationship

owner record type. The arrow points
fields that support the relationship

Each entity type in E
name. The attributes of the entity are represented by data fields of the record. We use the

term logical record to indicate that the actual implementation may be quite differe

The conversion of the E
1:M binary relationship into a
the entity type E2, then the binary
be S1 with an instance of the
more instances of the record type
attributes, unless the attributes
maintained in a separate logical record type created
additional record type requires
the record corresponding to the
the records corresponding to the

Each many-to-many relationship is handled by introducing a new record type to

represent the relationship wherein the attributes, if any of the relationship are stored. We
then create two symmetrical 1: M sets with the member in each of the sets being

A

B

EMPLOYEE

DEPARTMENT

This structure is referred to as DBTG set.

Bachman introduced a graphical means called a data structure diagram to denote

the logical relationship implied by a set. Here a labeled rectangle
corresponding entity or record type. An arrow that connects two labeled rectangles
represents the corresponding entity or record type. The arrow direction is from the owner

record type to the member record type. Figure shows two record types
EMPLOYEE) and the set type DEPT_EMP, with DEPARTMENT as the owner record type
and EMPLOYEE as the member record type.

Dept_Emp

diagrams have been extended to include field names

used to clearly identify the data fields involved in
relationship is shown by a set type arrow that starts from

arrow points to the member field within the member record type.
relationship are clearly identified.

Each entity type in E-R Diagram is represented by a logical record with the same
name. The attributes of the entity are represented by data fields of the record. We use the

to indicate that the actual implementation may be quite differe

the E-R Diagram into a Network database consists
a set. If there is a 1:M binary relationship R1

binary relationship is represented by a set. An
the record type corresponding to the entity E1 as

record type corresponding to entity E2 as the member.
tributes can be assigned to the member record type,

separate logical record type created for this purpose. The
record type requires that the original set be converted into two symmetrical

the attributes of the relationship as the member
the entities as the owners.

many relationship is handled by introducing a new record type to

he relationship wherein the attributes, if any of the relationship are stored. We
then create two symmetrical 1: M sets with the member in each of the sets being

Bachman introduced a graphical means called a data structure diagram to denote

the logical relationship implied by a set. Here a labeled rectangle represents the
corresponding entity or record type. An arrow that connects two labeled rectangles
represents the corresponding entity or record type. The arrow direction is from the owner

record type to the member record type. Figure shows two record types (DEPARTMENT and
EMPLOYEE) and the set type DEPT_EMP, with DEPARTMENT as the owner record type

names in the record type

in the set association. A
from the owner field in the

member record type. The

R Diagram is represented by a logical record with the same
name. The attributes of the entity are represented by data fields of the record. We use the

to indicate that the actual implementation may be quite different.

consists of converting each
 from entity type E1 to

An instance of this would
as the owner and one or

member. If a relationship has
member record type, they have to be

The introduction of this
symmetrical sets, with

member in both the sets and

many relationship is handled by introducing a new record type to

he relationship wherein the attributes, if any of the relationship are stored. We
then create two symmetrical 1: M sets with the member in each of the sets being the

M M Entity 2 Entity 1

Record type for entity 1 Record type for entity 2

Common member record type

newly introduced record type. The conversion of a many-to-many relationship into two

one-to-many sets using a common member record type as shown in figure below:

Set Type 1 Set Type 2

In the network model, the relationships as well as the navigation through the

database are predefined at database creation time.

Implementation of the Network Data Model:

The record is basic unit to represent data in the DBTG network database model.
The implementation of the one-to-many relationships of a set is represented by linking the
members of a given occurrence of a set to the owner record occurrence. The actual method

of linking the members of a given record occurrence to the owner is immaterial to the user
of the database; however, we can assume that the set is implemented using a linked list.
The list starts at the owner record occurrence and links all the member record
occurrences with the pointer in the last record occurrence leading back to the owner

record.
Figure below shows the implementation of the set occurrence DEPT-EMP where the

owner record is Comp.Sc. And the member records are the instances Ram Singh and
Balwinder. Note that for simplicity we have shown only one of the record fields of each
record. This method of implementation assigns one pointer (link) in each record for each
set type in which the record participates and, therefore allows a record occurrence to

participate in only one occurrence of a given set type. Any other method of implementing

Pointer to owner

Balwinder

the set construct in a database management system based on the DBTG proposal is, in

effect, equivalent to the linked list method.

Pointer to th

Pointer to next member
of the set occurrence

A second form of network implementation, especially useful for M:M relationships, is a
bit map, which is depicted in figure. A bit map is a matrix created for each relationship. Each
row corresponds to the relative record number of a target record of a relationship. A 1 bit in a

cell for row X and the column Y means that records corresponding to row X and column Y are
associated in this relationship; a zero means no association.

 1 2 ….. Y ……..

1 1 0 ….. 0 ……..

2 1 0 ….. 0 ……..
.
.

.

X 1 0 ….. 1 ……..
.

.

For example, figure below indicates that PRODUCT with relative record number X

is related to VENDOR with relative record numbers 1 and Y. Bit maps are powerful data
structures for the following reasons:

1. Any record type(s) can be included in rows and columns.
2. 1:1, 1:M, M:1 relationship can all be represented.
3. Rows and columns can be logically manipulated by Boolean operators to

determine records that satisfy complex associations.

4. A bit map can be manipulated equally as well in either a row or column access and

can be easily extended for n-ary relationships.
Advantages and Disadvantages of Network model

The main advantages of network model are :

Simplicity
One of the basic advantages of network model is its simplicity . Network model is

conceptually very simple to design
Capability to handle more relationship types :

The network model can handle the one-to-many (1 : M) and many to many relationships,
which is a real help in modeling the real life situations.

Ram Singh

 Comp. Sc.

e first member

Data Integrity
Integrity actually means that the data stored in the database is consistent. It actually

ensures the accuracy and efficiency of data stored. Data integrity is also one of the advantages of

network model. Network model does not allow member to exist without an owner. Thus a user
must first define the owner record and then the member record, this ensures data integrity.

Data independence
Network model allows isolating the programs from complex physical storage

details .

Database Standards
One of the major drawbacks of other models were the non-availability of universal

standards for database design and modeling. The network model is based on the

standards formulated by the DBTG and augmented by ANSI/SPARC (American National
Standards Institute/ Standards Planning and Requirements Committee) in the 1970s. All
the network database management systems conformed to these standards. These
standards included a Data Definition Language (DDL) and Data Manipulation Language

(DML), thus greatly enhancing database administration and portability.

Disadvantages of Network model
Even though network database model was significantly better than the early

models it also had many drawbacks . Some of them are
System complexity:

All the records are maintained using pointers and hence the whole database

structure becomes very complex.
Operational Anomalies

In network model insertion, deletion, and updating operations of any record require

large number of pointer adjustments, which makes the implementation very complex and
complicated .

Absence of structural independence
Since the data access method in the network database model is a navigational

system, making structural changes to the database is very difficult in most cases and
impossible in some cases. If changes are made to the database structure then all the
application programs need to be modified before they can access data. Thus, even though

the network database model succeeds in achieving data independence, it still fails to
achieve structural independence.

9.3 THE HIERARCHICAL DATA
A DBMS belonging to the hierarchical data model uses tree structures to represent

relationship among records. Tree structures occur naturally in many data organizations
because some entities have an institute hierarchical order. For example, an institute has a

number of programmes to offer. Each program has a number of courses. Each course has
a number of students registered in it. The following figure depicts the four entity types
Institute, Programmes, Courses and Students to make up the four different levels of
hierarchical structure. The figure below shows an example of database occurrence for an

institute. A database is a collection of database occurrence.

Definition: A hierarchical database therefore consists of a collection of records which are
connected with each other through links. Each record is a collection of fields (attributes),
each of which contains one data va

records.
A tree structure diagram serves the same purpose as an entity

diagram; namely it specifies the overall logical structure of the database.
The following figure shows typical database

(tree structure).

Institute

Courses

THE HIERARCHICAL DATA MODEL
A DBMS belonging to the hierarchical data model uses tree structures to represent

relationship among records. Tree structures occur naturally in many data organizations
entities have an institute hierarchical order. For example, an institute has a

number of programmes to offer. Each program has a number of courses. Each course has
a number of students registered in it. The following figure depicts the four entity types

stitute, Programmes, Courses and Students to make up the four different levels of
hierarchical structure. The figure below shows an example of database occurrence for an

institute. A database is a collection of database occurrence.

A hierarchical database therefore consists of a collection of records which are
connected with each other through links. Each record is a collection of fields (attributes),
each of which contains one data value. A link is an association between precisely two

A tree structure diagram serves the same purpose as an entity
diagram; namely it specifies the overall logical structure of the database.

The following figure shows typical database occurrence of hierarchical structure

Students

Programmes

A DBMS belonging to the hierarchical data model uses tree structures to represent

relationship among records. Tree structures occur naturally in many data organizations
entities have an institute hierarchical order. For example, an institute has a

number of programmes to offer. Each program has a number of courses. Each course has
a number of students registered in it. The following figure depicts the four entity types

stitute, Programmes, Courses and Students to make up the four different levels of
hierarchical structure. The figure below shows an example of database occurrence for an

A hierarchical database therefore consists of a collection of records which are
connected with each other through links. Each record is a collection of fields (attributes),

lue. A link is an association between precisely two

A tree structure diagram serves the same purpose as an entity-relationship
diagram; namely it specifies the overall logical structure of the database.

occurrence of hierarchical structure

Program A Program B

The hierarchical data model has the following features:

 Each hierarchical tree can have only one root record type and this record

type does not have a parent record type.

 The root can have any number of child record types and each of which can

itself be a root of a hierarchical sub tree.

 Each child record type can have only one parent record type; thus a M:M

relationship cannot be directly expressed between two record types.

 Data in a parent record applies to all its children records.

 Each record occurrence must have a parent record occurrence; deleting a

parent record occurrence requires deleting its entire children record
occurrence.

Replication Vs Virtual Record
The hierarchical model, like the network model cannot support a many-to many

relationship directly. In the network model the many-to many relationship is implemented by

introducing an intermediate record and two one-to-many relationship. In the hierarchical model,
the many-to many relationship can be expressed using one of the following methods: replication
or virtual record. When more than one employee works in a given department, then for the

hierarchical tree with EMPLOYEE as the root node we have to replicate the record for the
department and have this replicated record attached as a child to the corresponding occurrence
of the EMPLOYEE record type.

Replication of data would mean a waste of storage space and could lead to data

inconsistencies when some copies of replicated data are not updated. The other method for
representing the many-to-many relationship in the hierarchical data model is to use an indirect
scheme similar to the network approach. In the hierarchical model the solution is to use the so-
called virtual record. A virtual record is essentially a record containing a pointer to an occurrence

of an actual physical record type. This physical record type is called the logical parent and the
virtual record is the logical child. When a record is to be replicated in several database trees, we
keep a single copy of that record in one of the trees and replace, each other record with a virtual
record containing a pointer to that physical record. To be more specified, lit R be a record type

that is replicated in several hierarchical diagrams say H1, H2….Hn. To eliminate replication we
create a new virtual record type

Virtual record type virtual – R. Virtual –will contain no data.

Institute

S8

Course B2

S5 S4

Course A1

S4 S3

Course A2

 Course B3

S9 S10

 Course A1

S1 S2

Course B1

 S6 S7

The Accessing of Data Records in Hierarchical Data Structure
The tree type data structures used to represent hierarchical data model shows the

relationships among the parents, children, cousins, uncles, aunts, and siblings. A tree is
thus a collection of nodes. One node is designated as the root node; the remaining nodes
form trees or subtrees.

An ordered tree is a tree in which the relative order of the subtrees is significant.

This relative order t only signifies the vertical placement or level of the subtrees but also
the left to right ordering. Figures (a) and (b) below give two examples of ordered trees with
A as the root node and B,C, and D, in turn, are root nodes or subtree with children nodes
(E,F), (G)and (H,I,J) respectively. The significance in the ordering of the subtrees in these

diagrams is discussed below.

Traversing an ordered tree can be done in a number of ways. The order of

processing the nodes of the tree depends on whether or not one processes the node before
the node’s subtree and the order of processing the subtrees (left to right or right to left).
The usual practice is the so-called preorder traversal in which the node is processed first,
followed by the leftmost subtree not yet processed.

The preorder processing of the ordered tree of figure (a) below will process the
nodes in the sequence A,B,E.F,C,G,D,H,I,J.

The significance of the ordered tree becomes evident when we consider the

sequence in which the nodes could be reached when using a given tree traversing strategy.
For instance, the order in which the nodes of the hierarchical tree of figure (b) are
processed using the preorder processing strategy is not the same as the order for figure (a)

above , even though the tree of part b contains the same nodes as the tree of part a.
Two distinct methods can be used to implement the preorder sequence in the ordered tree.

The first method, shown in figure (c) below uses hierarchical pointers to implement the ordered
tree of figure (a) above .Here the pointer in each record points to the next record in the preorder

sequence.

The second method, shown in figure (d) uses two types of pointers; the child
and the sibling pointers.

The child pointer is used to point to the leftmost child and the sibling pointer is

used to point to the right sibling. The siblings are nodes that have the same parent. Thus,
the binary tree corresponding to tree in the figure (a) above is obtained by connecting
together all siblings of a node and deleting all links from a node to its children except for

the link to its leftmost child, using this transformation, we obtain the tree representation
as shown in figure (d).

Implementation of the Hierarchical Data Model
Each occurrence of a hierarchical tree can be stored as a variable length physical

record, the nodes of the hierarchy being stored in preorder. In addition the stored record
contains a prefix field. This field contains control information including pointers, flags, locks
and counters, which are used by DBMS to allow concurrent usage and enforce data integrity.

A number of methods could be used to store the hierarchical trees in the physical medium.
It affects not only the performance of the system but also the operations that can be performed on
the database, For example, if each occurrence of the hierarchical tree is stored as a variable
length record on magnetic tape like device, the DBMS will allow only sequential retrieval and

insertion or modification may be disallowed or performed lane by recreating the entire database.
The insertion and modification storage of the hierarchical database on a direct access device
allows an index structure to be supported for the root nodes and allows direct access to an
occurrence of the hierarchical definition tree of figure (a) using the variable length record

approach is given in the following figure:

 {a1 b1 e11 e12 f1 a1 b2 e21 e22 f2 c1 g1 d1 h1 I1 J1 d2 h21 h22 I2 J2}

Figure (e): Sequential storage of hierarchical database

The hierarchy can also be represented using pointer of either preorder hierarchical

type or child/sibling type. In the hierarchical type of pointer, each record occurrence has
a pointer that points to the next record in the pre order sequence. The child pointer points
to its leftmost child record occurrence. The sibling pointer points to its right sibling (or

twin). A record has one sibling pointer and its many child pointers as the number of child
types associated with the node corresponding to the record. The following two figures (f)
and (g) illustrate preorder hierarchical pointer and child sibling pointers respectively of
hierarchical tree shown in figure (e):

Sample Database

In order to understand the hierarchical data model better, let us take the example

of the sample database consisting of supplier, parts and shipments. The record structure
and some sample records for supplier, parts and shipments elements are as given in
following tables

The Supplier records
Sno Name Status City

S1 Suneet 20 Qadian

S2 Ankit 10 Amritsar

S3 Amit 30 Amritsar

The Part records

Pno Name Color Weight City

P1 Nut Red 12 Qadian

P2 Bolt Green 17 Amritsar

P3 Screw Blue 17 Jalandhar

P4 Screw Red 14 Qadian

P3 Screw Red 14 Gadian P1 Nut Red 12 Qadian

P2 Bolt Green 17 Amritsar P4 Screw Red 14 Qadian

The Shipment records
Sno Pno Qty

S1 P1 250

S1 P2 300

S1 P3 500

S2 P1 250

S2 P2 500

S3 P2 300

We assume that each row in supplier table is identified by a unique SNo that

uniquely identifies the entire row of the table. Likewise each part has a unique Pno. Also
we assume that no more than one shipment exists for a given supplier/part combination
in the shipments table.

Hierarchical view for the suppliers-parts database :
The following figure shows four individual trees , a tree for each part .

S1 Suneet 20 Qadian 300

S2 Ankit 10 Amritsar 500

S3 Amit 30 Amritsar 300

S1 Suneet 20 Qadian 250

S2 Ankit 10 Amritsar 250

S1 Saneet 20 Qadian 500

The tree structure has parts record superior to supplier record. That is parts from

the parent and supplier forms the children. Each of the four trees in above figure consists
of one part record occurrence, together with a set of subordinate supplier record
occurrences. There is one supplier record for each supplier of a particular part. Each

supplier occurrences include the corresponding shipment quantity. For example, supplier
S3 supplies 300 quantities of part P2. Note that the set of supplier occurrences for a given
part occurrence may contain any number of members, including zero (for the case of part
P4). Part P1 is supplied by two suppliers, S1 and S2. Part P2 is supplied by three

suppliers, S1, S2 and S3 and part P3 supplied by only supplier S1.

Operations on Hierarchical Model

There are four basic operations Insert, Update, Delete and Retrieve that can be
performed on each model. Now we consider in detail that how these basic operations are

performed in hierarchical database model.
Insert Operation: It is not possible to insert the information of the supplier e.g. S4 who
does not supply any part. This is because a node cannot exist without a root. Since, a part
P5 that is not supplied by any supplier can be inserted without any problem, because a

parent can exist without any child. So we can say that insert anomaly exists only for those
children, which has no corresponding parents.
Update Operation : Suppose we wish to change the city of supplier S1 from Qadian to

Jalandhar , then we will have to carry out two operations i.e. searching S1 for each part and then
performing updations for different occurrences of S1 .But if we wish to change the city of part P1
from Qadian to Jalandhar, then these problems will not occur because there is only a single entry

for part P1 and the problem of inconsistency will not arise . So we can say that update anomalies
only exist for children not for parent because children may have multiple entries in the database.
Delete Operation: In hierarchical model, quantity information is incorporated into supplier
record . Hence the only way to delete shipment (or supplied quantity) is to delete the

corresponding supplier record. But such an action will lead to loss of information of the supplier,
which is not desired.

For example : Supplier S2 stops supplying 250 quantity of part P1 , then the whole
record of S2 has to be deleted under part P1 which may lead to loss of information of

supplier . Another problem will arise if we wish to delete a part information and that part
happens to be only part supplied by some supplier. In hierarchical model, deletion of
parent causes the deletion of child records also and if the child occurrence is the only
occurrence in the whole database then the information of child records will also be lost

with the deletion of parent. For example: if we wish to delete the information of part P2
then we also lose information of S3, S2 and S1 supplier. The information of S2 and S1 can
be obtained from P1, but the information about supplier S3 is lost with the deletion of
record of P2.

Record Retrieval: Record retrieval methods for hierarchical model are complex and
asymmetric which can be clarified with the following queries:

Query 1: Find the supplier number for suppliers who supply part P2.

Solution: In order to get this information, first we search the information of parent P2

from database, since parent occurs only once in the whole database, so we obtain only a
single record for P2 . Then, a loop is constructed to search all suppliers under this part

and supplier numbers are printed for all suppliers.

Algorithm
get [next] part where PNO =P2;
do until no more shipments under this part;

get next supplier under this part;

print SNO;

end;

Query2: Find part numbers for parts supplied by supplier S2 .
Solution: In order to get required part number we have to search S2 under each part. If

supplier S2 is found under a part then the corresponding part number is printed,
otherwise we go to next part until all the parts are searched for supplier S2.

Algorithm
do until no more parts ;

get next part;
get [next] supplier under this part where SNO=S2;

if found then print PNO;
end;
In above algorithm “next” is interpreted relative to the current position (normally

the row most recently accessed; for the initial case we assume it to be just prior to the
first row of the table). We have placed square brackets around “next” in those statements
where we expect at the most one occurrence to satisfy the specified conditions.

9.4 Summary

The Network Data Model (NDM) represents data for any entity set by a logical
record type. The data for an instance of the entity set is represented by a record
occurrence of the record type. The DBTG model uses two different structures to represent

the database entities and relationships between the entities, namely record type and set
type. A record type is used to represent an entity type. It is made up of a number of data
items that represent the attributes of the entity. A set type is used to represent a directed
relationship between two records types, the so called owner record type, and the member

record type. In the DBTG model, a data structure diagram consists of two record types
and is linked to each other through many-to-one relationships. This structure is referred
to as DBTG set. Bachman introduced a graphical means called a data structure diagram
to denote the logical relationship implied by a set. Here a labeled rectangle represents the

corresponding entity or record type. An arrow that connects two labeled rectangles
represents the corresponding entity or record type. The arrow direction is from the owner
record type to the member record type.

The hierarchical data model consists of a set of record types. The relationship

between two record types is of the parent/child form, expressed using links or pointers.
The records thus connected form an ordered tree, the so-called hierarchical definition tree.
The hierarchical model provides a straightforward method of implementing a one-

to-many relationship. However, a many-to-many relationship between record types cannot
be expressed directly in the hierarchical model. Such a relationship can be expressed by
using data replication or virtual records.

The disadvantages of data replication are waste of storage space and the problem of

maintaining data consistencies. A virtual record is a mechanism to point to an occurrence

of a physical record. Thus, instead of replicating a record occurrence, single record

occurrence is stored and virtual record points to this record wherever the record is
required.
Comparison of Network and Hierarchical Model

S.No Hierarchical Data Model Network Data Model

1 Relationship between records is of

the parent child type.

Relationship between records is

expressed in the form of pointers or
in the forms of links

2 Many to many relationship is not

possible to represent in case of
hierarchical data model

Many to many relationship can be

very easily implemented in case of
network data model.

3 It is a simple straight forward and
natural method of implementing
record relationship

Record relationship implementation
is very complex due to the use of
pointers.

4 This type of model is useful only

when there is some hierarchical
character in the database.

Network model is useful for

representing such records which
have many to many relationships.

5 In order to represent links among

records, pointers are used. Thus
relations among records are

physical.

In network model also the record

relations are physical.

6 Searching for a record is very

difficult since one can retrieve a
child only after going through its
parent record.

Searching a record is easy since

there are multiple access paths to a
data element.

7 Hierarchical model suffers from
insert anomaly as we cannot insert
the information of a child who does
not have any parent.

Network model does not suffer from
insert anomaly as we can insert the
information of a new supplier by
showing a record set pointer to itself.

8 There are multiple occurrences of
child records, which lead to
problem of inconsistency during the

update operation.

Network model is free from update
anomalies because there is only a
single occurrence for each record set.

9 It is based on parent child
relationship and deletion of parent
results in deletion of child records

also.

It is based on many to many
relationship (m:m) which make it free
from delete anomalies .

10 Retrieve algorithms in case of
hierarchical data model are

complex and asymmetric.

Retrieve algorithms in case of
network data model are complex and

symmetric.

9.5 Questionnaires
1. What are features of Network data model?
2. Write short note on DBTG model.
3. Define DBTG Set, record type, set occurrence, set type, owner record type,

and member record type.
4. List down the features of Hierarchical model.
5. Explain the ways of implementing the Hierarchical Data Model.

6. Explain the ways of implementing the Network Data Model.

PGDCA PAPER : DBMS

LESSON NO. : 10

RELATIONAL DATA MODEL

Introduction
Relational Data Model Concepts
Constraints
Summary
Questionnaires

10.1 Introduction
The relational data model is an abstract theory of data that is based on certain

aspects of mathematics(principally set theory and predicate logic).

The principles of relational model were originally laid down in 1969-70 by Dr. E.F.
Codd at that time a member of IBM. Relational model is a way of looking at data.
Relational model stores data in the form of tables. A relational model database is defined
as a database that allows you to group its data items into one or more independent tables

that can be related to one another by using fields common to each related table.

10.2 Relational Data Model Concepts

The relational model is concerned with three aspects of data :

1) Structures
2) Data integrity
3) Manipulation
Structure aspects: The data in the database is perceived by the user as a table. It
means database is arranged in the form of tables and collection of tables is called

database. Structure means design view of database like data type, its size etc.
Integrity aspect: Those tables that satisfy certain integrity constraints like domain

constraints, entity constraints, referential integrity and operational constraints.
Manipulative aspects: The operators available for the user for manipulating those
tables into database e.g. for purpose of retrieval of data like projection, join and
restrict.

Characteristics of Relational Database
Relational database system have the following characteristics:

1) The whole data is conceptually represented as an orderly arrangement of
data into rows and columns called a relation or a table.

2) All values are scalar. That is, at any given time for each row/column
position in the relation there is one and only one value.

3) All operations performed on an entire relation and result is an entire
relation, a concept known as closure.

Dr Codd when formulating the relational model, chose the term “relation” because
it was comparatively free of connotations , unlike, for example, the word “table”. It is a

common misconception that the relational model is so called because relationships are
established between tables. In fact the name is derived from the relations on whom it is

based. Notice that the model requires only that data be conceptually represented as a

relation; it does not specify how the data should be physically implemented. A relation is a
relation provided that it is arranged in row and column format and its values are scalar.
Its existence is completely independent of any physical representation.

Emp_Code Name Year

21130 Amar Jain 1

30143 Kuldeep 3

41894 Manoj 2

51207 Rita Bajaj 6

Basic Terminology used in Relational Model

Tuples of a relation
Each row of data is tuple. Actually, each row in n-tuple, but the “n-“ is actually

dropped.
Cardinality of a relation

The number of tuples in a relation determines its cardinality. In this case, the

relation in above figure has a cardinality of 4.
Degree of a relation

Each column in the tuple is called an attribute. The number of attributes in a

relation determines its degree. The relation in above figure has degree 3.

Domains
A domain definition specifies the kind of data represented by the attribute. More

particularly, a domain is a set of all possible values that an attribute may validly contain.
Domains are often confused with data types, but this is inaccurate. Data type is a

physical concept while domain is a logical one. “Number “ is a data type and “Age” is a
domain .

To give another example “Street name” and “Sur name” might both be represented
as text fields but they are obviously different kinds of text fields, they belong to different
domain.

Domains is also a broader concept than data type in that domain definition includes a

more specific description of the valid data. For example, the domain Degree Awarded, which
represents the degrees awarded by a university in the database schema, this attribute might be
defined as Text[3[, but it’s not just any three–character string, it’s a member of the set {BS, BA,
MA, MS, PhD, LLB, MD}, of course not all hundred or so values if we are talking about mauseums

exhibit. In such instances it’s useful to define the domain in terms of the rules, which can be used
to determine the membership of any specific value in the set of all valid values.

For example, Person Age could be defined as “an integer in the range 0 to 120”

whereas Exhibit Age (age of any object for exhibition) might simply by “an integer equal to
or greater than 0”.

Body of a Relation
The body of the relation consists of an unordered set of zero or more tuples. There

are some important concepts here. First the relation is unordered. Record numbers do not

apply to relations. Second a relation with O tuples still qualifies as a relation. Third, a
relation is a set. The items in a set are, by definition uniquely identifiable. Therefore for a

table to qualify as a relation each record must be uniquely identifiable and the table must

contain no duplicate constraints.
Keys of a Relation

It is a set of one or more columns whose combined values are unique among all

occurrences in a given table. A key is the relational means to specify uniqueness.

10.3 Constraints :

Constraints are used to validate data entered for the specified column(s) namely :

There are two types of constraints
1) Table Constraint

2) Column Constraint
Table Constraint

If the constraint spans across multiple columns , the user will have to use table
level constraints . If the data constraint attached to a specific cell in a table references the

contents of another cell in the table , then the user will have to use table level constraints.
Primary Key as table level constraint :

E.g Create table sales_order_details(s_order_no varchar2(6), Product_no varchar2(6),

PRIMARY KEY (s_order_no, product no));
Column Level Constraint

If the constraints are defined with the column definition, it is called as a column

level constraint. They are local to a specific column.
Primary Key as a column level constraint

Create table client (client_no varchar2(6) Primary Key…);

Features of Constraint
1) NOT NULL CONDITION

2) UNIQUENESS
3) PRIMARY KEY identification

4) FOREIGN KEY
5) CHECK the column value against a specified condition
Some important constraints features and their implementation have been

discussed below

Primary Key Constraints

A PRIMARY KEY constraint designates a column or combination of columns as the

table’s primary key. To satisfy a PRIMARY KEY constraint, both the following conditions
must be true :

1) No primary key value can appear in more than one row in the table.

2) No column that is the part of the primary key can contain null value.

A table can have only one primary key.
A primary key column cannot be of data type LONG OR LONG ROW. You cannot

designate the same column or combination of columns as both a primary key and a
unique key or as both a primary key and a cluster key. However, you can designate the
same column or combination of columns as both a primary key and a foreign key.

Defining Primary Keys

You can use the column_constraint syntax to define a primary key on a single
column.

Example
The following statement creates the DEPT table and defines and enables a primary

key on the DEPTNO column :

CREATE TABLE dept
(deptno NUMBER (2) CONSTRAINT pk_dept PRIMARY KEY,

dname VARCHAR2(10));
The pk_dept constraint identifies the deptno column as the primary key of the dept

table . This constraint ensures that no two departments in the table have the same
department number and that no department number is NULL .

Alternatively, you can define and enable this constraint with table constraint
syntax :

CREATE TABLE dept
(deptno NUMBER(2),

dname VARCHAR2(9),
loc VARCHAR2(10),
constraint PK_DEPT PRIMARY KEY (deptno));

Defining Composite Primary Keys

A composite primary key is a primary key made up of a combination of columns.

Because Oracle creates index on the columns of a primary key, a composite primary key
can contain a maximum of 16 columns. To define a composite primary key, you must use
the table_constraint syntax, rather than the column_constraint syntax.

Example

The following statement defines a composite primary key on the combination of the

SHIP_NO and CONTAINER_NO columns of the SHIP_CONT table :
ALTER TABLE ship_cont

ADD PRIMARY KEY(ship_no, container_no) DISABLE
This constraint identifies the combination of the SHIP_NO and CONTAINER_NO

columns as the primary key of the SHIP_CONTAINER. The constraint ensures that no two
rows in the table have the same values for both SHIP_NO column and the

CONTAINER_NO column.
The CONSTRAINT clause also specifies the following properties of the constraint .

1) Since the constraint definition does include a constraint name, Oracle
generates a name for the constraint .

2) The DISABLE option causes Oracle to define the constraint but not enforce

it.

Referential Integrity Constraints
A referential integrity constraint designates a column or combination of columns as

a foreign key and establishes a relationship between that foreign key and a specified

primary or unique key, called the referenced key. In this relationship, the table containing
the foreign key is called the child table and the table containing the referenced key is
called the parent table. Note the following:

1) The child and parent tables must be on the same database. They cannot on

different nodes of a distributed database.
2) The foreign key and the referenced key can be in the same table. In this

case, the parent and child tables are the same.

3) To satisfy a referential integrity constraint, each row of the child table must
meet one following conditions:
a) The value of the row’s foreign key must appear as a referenced key

value in one of the parent table’s rows . The row in the child table is

said to depend on the referenced key in the parent table.

b) The value of one of the columns that makes up the foreign key must

be null.
A referential integrity constraint is defined in the child table. A referential integrity

constraint definition can include any of the following key words:

1) Foreign Key : Identifies the column or combination of columns in the child
table that makes up the foreign key . Only use this keyword when you
define a foreign key with a table constraint clause.

2) Reference : Identifies the parent table and the column or the combination

of columns that make up the referenced key. If you only identify the parent
table and omit the column names, the foreign key automatically references
the primary key on the parent table. The corresponding columns of the
referenced key and the foreign key must match in number and data types.

On Delete Cascade : Allows deletion of referenced key values in the parent table that have
dependent rows in the child table and causes Oracle to automatically delete dependent rows from
the child table to maintain referential integrity . If you omit this Option, Oracle forbids deletions or

referenced key in the parent table that have dependent rows in the child table.
In the first example, we defined a referential integrity constraint in a CREATE TABLE

statement that contains as clause. Instead, you can create the table without the constraint and
then add it later with an ALTER TABLE statement.

You can define multiple foreign keys in a table . Also , a single column can be part
of more than one foreign key .

Defining Referential Integrity Constraints
You can use column_constraint syntax to define a referential integrity constraint in

which the foreign key is made up of a single column .
Example

The following statement creates the EMP table and defines and enables a foreign
key on the DEPTNO column that references the primary key on the DDPTNO column of
the DEPT table :

CREATE TABLE emp
(Empno NUMBER (4) ,

ename VARCHAR2 (10) ,
job VARCHAR2 (9) ,
ngr NUMBER (4) ,

hiredate DATE ,

sl NUMBER (7,2) ,
deptno CONSTRAINT fk_deptno REFERENCES dept (deptno));
The constraint FK_DEPTNO ensures that all employees in the EMP table work in a

department in the DEPT table. However, employees have null department numbers.

Before you define and enable this constraint you must define and enable a
constraint that designates the DEPTNO column of the DEPT table as a primary or unique

key .Note that the referential integrity constraint definition does not use the FOREIGN

KEY keyword to identify the columns that make up the foreign key. Because the
constraint is defined with a column constraint clause on the DEPTNO column, the foreign
key is automatically on the DEPTNO column.

Note that the constraint definition identifies both the parent table and the columns of

the referenced key. Because the referenced key is the parent table’s primary key, the referenced
key column names are optional.

Note that the above statement omits the DEPTNO column’s data type. Because this
column is a foreign key, Oracle automatically assigns it the data type DEPTNO column to

which the foreign key refers.
Alternatively, you can define a referential integrity constraint with table_constraint

syntax :
CREATE TABLE emp

(empno NUMBER (4) ,

ename VARCHAR2 (10) ,
job VARCHAR2(9) ,

ngr VARCHAR2(9) ,
Hiredate DATE ,
Sl NUMBER(7,2) ,

Comm NUMBER(7,2) ,
Deptno CONSTRAINT fk_deptno FOREIGN KEY
(deptno) REFERENCES dept(deptno));
Note that the foreign key definitions in both the above statements omit the ON

DELETE CASCADE option , causing Oracle to forbid the deletion of a department if any

employee works in that department .
Now if we take a simple example with following relations based on which we see the

various operations in relational model. Relations are

1) Supplier records

2) Part records
3) Shipment records

The Supplier records

SNo Name Status City

S1 Suneet 20 Qadian

S2 Ankit 10 Amritsar

S3 Amit 10 Amritsar

The Part records
PNo Name Color Weight City

P1 Nut Red 12 Qadian

P2 Bolt Green 17 Amritsar

P3 Screw Blue 17 Jalandhar

P4 Screw Red 14 Qadian

The Shipment records
Sno Pno Qty

S1 P1 250

S1 P2 300

S1 P3 500
S2 P1 250
S2 P2 500
S3 P2 300

As we discussed earlier , in this context we assume that each row in the Supplier
table is identified by a unique SNo (Supplier Number), which uniquely identifies the entire
row in the table . Likewise each part has a unique PNo (Part Number) .Also we assume
that no more than one shipment exists for a given supplier/part combination in the

shipments table .
Note that the relations Parts and Shipments have PNo (Part Number) in common

and Supplier and Shipments relations have SNo (Supplier Number) in common. The

Supplier and Parts relation have City in common. For example, the fact that supplier S3
and part P2 are located in the same city is represented by the appearance of the same
value, Amritsar, in the city column of the two tuples in relations.

Operations in Relational Model

There are four basic operations :

1) Insert

2) Delete
3) Modify
4) Retrieve

Insert Operation :
Suppose we wish to insert the information of supplier who does not supply any

part, it can be inserted in S table without any anomaly e.g. S4 can be inserted in S table.
Similarly, if we wish to insert information of a new part that is not supplied by any

supplier, it can be inserted into a P table. If a supplier starts supplying any new part, then
this information can be stored in shipment table SP with the supplier number, part
number and supplied quantity. So we can say that insert operations can be performed in
all the cases without any anomaly.

Modify Operation
Suppose supplier S1 has moved from Qadian to Jalandhar. In that case we need to make

changes in the record so that the supplier table is up-to-date. Since supplier number is the

primary key in the S table. so there is only a single entry of S1, which needs a single update and
problem of data inconsistencies would not arise. Similarly, part and shipment information can be
updated by a single modification in the tables P and SP respectively without the problem of
inconsistency. Update operation in relational model is very simple and without any anomaly in

case of relational model.
Delete Operation:

Suppose if supplier S3 stops the supply of part P2, then we have to delete the
shipment connecting part P2 and supplier S3 from shipment table SP. This information

can be deleted from SP table without affecting the details of supplier of S3 in supplier

table and part P2 information in part table. Similarly, we can delete the information of

parts in P table and their shipments in SP table and we can delete the information of
suppliers in S table and their shipments in SP table.
Record Retrieval:

Record retrieval methods for relational model are simple and symmetric which can
be clarified with the following queries :

Query 1: Find the supplier numbers for suppliers who supply part P2

In order to get this information we have to search the information of part P2 in the

SP table. For this a loop is constructed to find the rcords of P2 and on getting the records,
corresponding supplier numbers are printed.

Algorithm
do until no more shipments;
get next shipment where PNO=P2;

print SNO;
end;

Query 2 : Find part numbers for parts supplied by supplier S2.

In order to get this information we have to search the information of supplier S2 in

the SP table. For this a loop is constructed to find the records of S2 and on getting the
records corresponding part numbers are printed.
Algorithm

do until no more parts ;
get next shipment where SNO=S2;

print PNO;
end;

Since both the queries involve the same logic and are very simple, so we can conclude that
retrieval operation of this model is simple and symmetric.

Structured Query Language (SQL)

Structured query language (SQL) pronounced as “sequel” is the set of commands

that all programs and users must use to access data within the database. Application
programmers and Oracle tools often allow users to access the database without directly
using SQL, but these applications in turn must use SQL when executing the user’s
request.

Historically, the paper, “ A Relational Model of Data for Large Shared Data Banks,”
by Dr E F Codd, was published in June 1970 in the Association of Computer Machinery
(ACM) journal, Communications of the ACM. Codd’s model is now accepted as the

definitive model for relational database management systems (RDBMS). The language,
Structured English Query Language (SEQUEL) was developed by IBM Corporation, Inc .to
use Codd’s model. SEQUEL, later became SQL. In 1979, Relational Software, Inc
introduced the first commercially available implementation of SQL. Today, SQL is

accepted as the standard RDBMS language. The latest SQL standard published by ANSI
and ISO is often called SQL-92 (and sometimes SQL2).
Benefits of SQL

This section describes many of the reasons for SQL’s widespread acceptance by relational

database vendors as well as end users. The strengths of SQL benefit all ranges of users including

application programmers, database administrators, and management and end users.

Non-Procedural Language
SQL is a non-procedural language because it :

1) Processes sets of records rather than just one at a time ;
2) Provides automatic navigation to the data .
3) System administrators

4) Database administrators
5) Security administrators

6) Application programmers
7) Decision support system personnel

8) Many other types of end users

Unified Language

SQL provides commands for a variety of tasks including :
1. Querying data;

2. Inserting, updating and deleting rows in a table ;
3. Creating ,replacing , altering and dropping objects ;
4. Controlling access to the database and its object ;
5. Guaranteeing database consistency and language .

SQL unifies all the above tasks in one consistent language .
Common Language for all Relational Databases

Because all major relational database management systems support SQL, you can

transfer all skills you have gained with SQL from one database to another. In addition,
since all programmes written in SQL are portable, they can often be moved from one
database to another with very little modification.
Embedded SQL

Embedded SQL refers to the use of standard SQL commands embedded within a

procedural programming language. Embedded SQL is a collection of these commands:
All SQL commands, such as SELECT and INSERT, available with SQL with

interactive tools;
Flow control commands, such as PREPARE and OPEN, which integrate the standard SQL,

commands with a procedural programming language.
The Oracle precompilers support embedded SQL. The Oracle precompilers interpret

embedded SQL statements and translate them into statements that can be understood by
procedural language compilers. Each of these Oracle precompilers translate embedded

SQL programmes into a different procedural language:
The Pro *Ada precompiler
The Pro *C/C++ Precompiler
The Pro * COBOL precompiler

The Pro * FORTRAN precompiler
The Pro * Pascal precompiler
The Pro * PL/I precompiler

Database Objects :
Oracle supports two types of data objects .

Schema Objects : A schema is a collection of logical structures of data, of schema objects.

A schema is owned by a database user and has the same name as the user. Each user
owns a single schema. Schema objects can be created and manipulated with SQL and
include the following types of objects.

Cluster
triggers

database links database

Indexes
sequences

 Packaged

Snapshots
functions

snapshot logs shared

Stored procedures synonyms tables

Views

Non-schema Objects : Other types of objects are also stored in the database and can be
created and manipulated with SQL , but are not contained in a schema .

Profiles Rates

Rollback segments table spaces

Users

Objects Naming Conventions
The following rules apply when naming objects :

1) Names must be from 1 to 30 characters long with the following exceptions :
2) Names of database are limited to 8 characters. Names of database links can be as

long as 128 characters.

3) Names cannot contain quotation marks.
4) Names are not case sensitive.
5) A name must begin with an alphabetic character from your database character set

unless surrounded by double quotation marks.

6) Names can only contain alphanumeric characters from your database character set
and the character _,$ and #. You are strongly discouraged from using $ and #.

7) If your database character set contains multi-byte characters, it is recommended
that each name for a user or a role contain at least one single-byte character.

8) Names of databases links can also contain periods (.) and ampersand &.
9) Columns in the same table or view cannot have the same name. However, column in

different tables or views can have the same name.

10) Procedures or functions contained in the same package can have the same name,

provided that their arguments are not of the same number and data types.

Creating multiple procedures of functions with the same name in the same

package with different arguments is called overloading the procedure or function.

Objects Naming Guidelines

There are several helpful guidelines for naming objects and their parts :

1) Use full, descriptive, pronounceable names (or well-known abbreviations).
2) Use consistent naming rules.
3) Use the same name to describe the same entity or attributes across tables.
4) When naming objects, balance the objective of keeping names short and easy to

use with the objective of making names as long and descriptive as possible. When
in doubt, choose the more descriptive name because many people may use the

objects in the database over a period of time. Your counterpart ten years from now
may have difficulty understanding a database with names like PMDD instead of
PAYMENT_DUE_DATE.

5) Using consistent naming rules helps understand the part plays in your application.

One such rule might be to begin the names of all tables belonging to the FINANCE
application with FIN_.

6) Use the same names to describe the same things across tables. For examples, the
department number columns of the EMP and DEPT tables should be named

DEPTNO.

Advantages and Disadvantages of Relational Model
The major advantages of the relational model are :

Structural independence
In relational model changes in the database structure do not affect the data access.

When it is possible to make change to the database structure without affecting the
DBMS’s capability to access data, we can say that structural independence has been
achieved. So, relational database model has structural independence.
Conceptual simplicity:

We have seen that both the hierarchical and the network database models were
conceptually simple. But the relational database model is even simpler at the conceptual

level. Since the relational data model frees the designer from the physical data storage
details, the designers can concentrate on the logical view of the database.
Design, implementation, maintenance and usage case:

The relational database model achieves both data independence and structure
independence making the database design, maintenance, administration and usage much
easier than the other models.
Ad hoc query capability:

The presence of very powerful, flexible and easy-to-use query capability is one of

the main reasons for the immense popularity of the relational database model. The query
language of the relational database models structured query language or SQL makes ad
hoc queries a reality. SQL is a fourth generation language. A 4GL allows the user to

specify what must be done without specifying how it must be done. So, using SQL the
users can specify what information they want and leave the details of how get the
information to the database.

Disadvantages of Relational Model
The relational model’s disadvantages are very minor as compared to the advantages

and their capabilities far outweigh the shortcomings . Also the drawbacks of the relational

database systems could be avoided if proper corrective measures are taken. The drawbacks are

not because of the shortcomings in the database model, but the way it is being implemented.
Some of the disadvantages are :

Hardware overheads:
Relational database system hides the implementation complexities and the physical

data storage details from the users. For doing this, for making things easier for the users, the
relational database systems need more powerful hardware computers and data storage devices.
So the RDBMS needs powerful machines to run smoothly. But as the processing power of

modern computers is increasing at an exponential rate and in today’s scenario, the need for
more processing is no longer a very big issue.

Ease of design can lead to bad design
The relational database is an easy to design and use. The users need not know the

complex details of physical data storage. They need not know how the data is actually

stored to access it. This ease of design and use can lead to the development and
implementation of very poorly designed databases. Since the database is efficient, these
design inefficiencies will not come to light when the database is designed and when there
is only a small amount of data. As the database grows, the pooly designed databases will

slow the system down and will result in performance degradation and data corruption.

Information island phenomenon
As we have said before, the relational database systems are easy to implement and

use. This will create a situation where too many people or departments will create their

own databases and applications.
These information islands will prevent the information integration that is essential

for the smooth and efficient functioning of the organization. These individual databases

will also create problems like data inconsistency, data duplication, data redundancy and
so on.

But as we have said all these issues are minor when compared to the advantages and all
these issues could be avoided if the organization has a properly designed database and has

enforced good database standards.

10.4 Summary

The relational data model was first introduced by Dr. E.F. Codd, an Oxford trained

mathematician while working in IBM Research Center in 1970’s. He represented this idea
in a classic paper and attracted immediate attention due to its simplicity and
mathematical foundations. It also drew immediate attention of the computing industry

because of its simple way in which it represented information by well understood
convention of tables of values as its building block. The relational model is considered one
of the most popular developments in the database technology because it can be used for
representing most of the real world objects and the relationships between them.

10.5 Questionnaires
Q1. Explain the various concepts of relational data model.
Q2. Explain the various constraints in relational data model.

